Advances in Artificial Intelligence
Machine Intelligence Solutions
  • Home
  • Research
  • Applications
  • Projects
    • PrivacyPreservingTransferLearning
    • DeepStressAssessment
    • PrivacyPreservingDeepLearning
    • NonparametricDeepLearning
    • DeepGaussianFuzzyMappings
    • WaterApplications
    • ImageMining
    • AnalyticalFuzzyTheory
    • JobTasksAssessment
    • MembershipsOptimization
    • ImageDenoising
    • ImageDescriptors
    • ChildEarBiometrics
    • StochasticFramework
    • SFFPL
    • StochasticFuzzySystems
    • PhysiologicalSignalAnalysis
    • EnvironmentalModeling
    • QSAR
    • WorkloadScoreModeling
    • MentalStressAssessment
    • FitnessEstimation
    • FuzzyFiltering
  • Media
  • Publications
  • Services
  • Author
  • Blogs
  • Source Code

Stationary Fuzzy Fokker-Planck Learning

Stationary fuzzy Fokker-Planck learning (SFFPL) is a recently introduced computational method that applies fuzzy modeling to solve optimization problems. This study develops a concept of applying SFFPL based computations for nonlinear constrained optimization. We consider the development of SFFPL based optimization algorithms which don't require derivatives of the objective function and of the constraints. The sequential penalty approach was used to handle the inequality constraints. It was proved under some standard assumptions that the carefully designed SFFPL based algorithms converge asymptotically to the stationary points. The convergence proofs follow a simple mathematical approach and invoke mean-value theorem. The algorithms were evaluated on the test problems with the number of variables up to 50. The performance comparison of the proposed algorithms with some of the standard optimization algorithms further justifies our approach. The SFFPL based optimization approach, due to its novelty, could be possibly extended to several research directions.

Related Publications

  • M. Kumar, N. Stoll, K. Thurow, and R. Stoll, “Stationary Fuzzy Fokker-Planck Learning for Derivative-Free Optimization,” IEEE Transactions on Fuzzy Systems, vol. 21, no. 2, pp. 193-208 2013. 


Let us chat ...

Looking for digitalization solutions for a project?
Email us at
mohit.kumar at uni-rostock.de